CS2040S: Data Structures and Algorithms Solved

$ 20.99
Category:

Description

Problem Set 6
Discipline.
Problem 6. (Automatic Writing)
Hey there, student! Are you tired of boring old writing assignments that leave you feeling like a robot? Well, get ready to switch things up, because this project is about to take your writing skills to the next level – with a little help from yours truly!
That’s right, you heard it here first – this paragraph was actually written by none other than ChatGPT (a language model trained by OpenAI). So, let’s talk about this project. As the original text explains, writing-intensive modules can be tough, with so many essays to write and not enough time to keep up with lectures. That’s where CS2040S comes in – we’re here to help you develop an automatic writing program that can churn out page after page of new text, all in your preferred style.
Whether you want your writing to sound like a Shakespearean masterpiece or just like something you wrote last year, our program can adapt to your needs. How, you ask? By using a technique called a Markov Chain, which was first suggested by Claude Shannon in his seminal paper, A Mathematical Theory of Communication, published way back in 1948.
Essentially, the program analyzes the statistical properties of an input text – such as the likelihood of a certain letter following a particular sequence of letters – and uses that information to produce new text that closely resembles the original. It’s a pretty neat trick, and it’s one that’s used in all sorts of modern technology, from Google’s PageRank algorithm to, well, ChatGPT!
Here is a shocking twist, everything above was in fact, written by ChatGPT! :0
(how good ?!)
Markov Models
Given a text, you can build up the Markov Model. A Markov Model captures the frequency of a specific letter/character appearing after a specific preceding string (which can be of varying length). The order of the Markov model is the length of that preceding string.
For example, if we have the following text:
a b d a c a b d a c b d a b d a c d a
We can build the following Markov Model of order 1:
a b 1/2
a c 1/2
b d 1
c a 1/3
c b 1/3
c d 1/3
d a 1
This implies the following:
• After the string ‘a’, half the time you find a ‘b’, and half the time you find a ‘c’.
• After the string ‘b’, you always find a ‘d’.
• After the string ‘c’, one-third of the time you find letters ‘a’, ‘b’, or ‘d’ respectively (i.e., they are equally common after a ‘c’).
• After the string ‘d’, you always find an ‘a’.
You can think of these as probabilities (though so far, there is no randomness at all). Notice that in the text above the table, there are three instances when the character ‘a’ is followed by a ‘b’, and there are three instances when ‘a’ is followed by a ‘c’. Similarly, ‘b’ is always followed by a ‘d’, and ‘d’ is always followed by an ‘a’. The character ‘c’ is followed by an ‘a’ once, a ‘b’ once, and a ‘d’ once.
A Markov Model of order 2 captures how likely a given letter is to follow a string of length 2. Suppose we have the following text:
a b c d a b d d a b c d d a b d
Here we have an example of Markov Model of order 2 built by the text above.
ab c 1/2
ab d 1/2
bc d 1
bd d 1
cd a 1/2
cd d 1/2
da b 1
dd a 1
Notice that in the text above, there are two instances when the string ‘ab’ is followed by the letter ‘c’ and two instances when the string ‘ab’ is followed by the letter ‘d’. After the string ‘bc’, you always get the letter ‘d’, and after the string ‘bd’, you always get the letter ‘d’, etc.
Producing a New Text
Once you have your Markov Model, you can go about generating a new text. You need to start with a seed string of the same length as the order of the Markov Model. For example, if the Markov Model is of order 6, you need to start with a string of length 6.
We use the term ‘kgrams’ to refer to the k-character strings, where k is the order. In order to generate the next character, you look back at the previous k characters (inclusive of the current last character). Look up that kgram in your Markov Model, and find the frequency that each character appears after that kgram. If the kgram never appeared in your Markov Model, then your newly-generated text is completed. Otherwise, you randomly choose the next character based on the probability distribution indicated by the Markov Model.
Once you have found the next character that way, you add it to the end of your string, and repeat the process as many times as you want!
Problem Details
For this problem, you have been provided with the TextGenerator Java class, more information will be provided in the section below. You will submit one Java class: MarkovModel.
Problem 6.a. Implement only the following 4 methods:
MarkovModel(int order, long seed): Constructs a Markov Model of the specified order. You can assume that the order will be at least 1. The seed should be used to initialize the pseudorandom number generator that your class will use (the template code already does this). A pseudorandom number generator’s number sequence is completely determined by the seed. So, if a pseudorandom number generator is reinitialized with the same seed, it will produce the same sequence of numbers.
int getFrequency(String kgram, char c): Returns the number of times the specified character c appears immediately after the string kgram in the input text. The behaviour of this method is only defined if the length of the kgram is equal to the order of the Markov Model. For example, in the Figure 1 below, the frequency of ‘g’ appearing after the kgram ‘ga’ is 4. If the string kgram never appears in the original text, then you should return 0. Be ensure your code handles invalid cases explicitly.
Note: both getFrequency methods are expected to have a constant run time.
Problem 6.b. Next, implement the nextCharacter method:
char nextCharacter(String kgram): Returns a random character chosen according to the
Markov Model. The probability of a character ‘c’ should be equal to .
That is, the probability of character ‘c’ should be equal to the frequency that ‘c’ follows the string kgram in the text. If there is no possible next character (e.g., because the kgram does not appear in the text, or only appears at the very end of the text), then return the specially defined token final char NOCHARACTER = 0 (defined in the template file). The kgram must be the length specified by the order of the Markov model. To generate the random choice, you must use the pseudorandom number generator with the specified seed. You must use the process described in ”Random character generation” below to generate the random choice.
frequency probability
a c g a c g
aa 1 1 0 0 1 0 0
ag 4 2 0 2 2/4 0 2/4
cg 1 1 0 0 1 0 0
ga 5 1 0 4 1/5 0 4/5
gc 1 0 0 1 0 0 1
gg 3 1 1 1 1/3 1/3 1/3
Figure 1: Markov Model produced by the string gagggagaggcgagaaa.
Implementation advice
There are several approaches to designing the MarkovModel class. Here we provide some tips for how you might implement it.
Basic structure.
There are two standard ways you might store the information about the kgram. You might use a symbol table (i.e., a hash table) that maps strings of length k (where k is the order of the Markov model) to an array containing 256 integers, one representing each possible ASCII character. The array records the number of time each character follows the given string. For example, the character ‘a’ is 97, in ASCII. Hence, if k = 2, given an input string ‘xya’, you would add to your hash table an entry with the key equal to ‘xy’ and the value equal to an array of integers where value[97] == 1.
For the purposes of this Problem Set, you should use a Hash Table and NOT use Tries or TreeSet or TreeMap to store information about the kgram. If you are unsure whether you can use a particular data structure, please post in the forums to seek clarifications.
Random character generation
Presumably you have now built your Markov Model, and now know the proper frequencies that each character is followed by each kgram. In order to generate the next character in the text, you need to make a random choice. For testing purposes, you must use the random number generator specified in the template code: java.util.Random, and you must use the seed specified in the constructor (via a setSeed call on the random number generator object which is already in the template code). If you run the same test twice with the same seed, you will get the same answer! This is very useful for testing.
To choose a random character, you first select a random integer from [0,10], i.e., a range containing 11 integers. You can do this by calling generator.nextInt(11). You can then partition this range of random numbers:
• if you get {0,1} then you return ‘j’;
• if you get {2,3,4,5,6}, then you return ‘m’;
• if you get {7,8,9}, then you return ‘p’;
• if you get {10}, then you return ‘z’.
You must process the possible letters in alphabetic order (or by order of their ASCII character values).
In general, if there is a set of C possible next characters which appear a total of N times after the k-letter prefix, you should choose a random number from [0,N − 1], and then go through the set in alphabetical order to determine which character was chosen by the random selection, weighting each character by the number of times it appears.
The reason we ask you to choose the random character in this way is twofold: first, it is a reasonably efficient way to sample from a distribution, and second, it will allow us to ensure that every solution produces the same random sequence (which makes it easier to test).
Other tips
• A Java HashMap is a parameterized data type. That means that when you create it, you have to specify what the key and value types are. For example, if you want to use a key type K and a value type V, you would use the class HashMap<K, V>. In your case today, if you want a key type of String and a value type of Integer, you use a HashMap<String, Integer>. (Whenever you need to use the name of the class, whether to declare the variable or to create a new object, you can just use that full name including the String and Integer types.)
• Notice, though, that for your key and value types, you cannot use primitive types like int or char. Instead, you have to use the wrapper class version of these types: Integer, Character, etc. That is why, above, we used Integer as the value type. You can mostly use int and Integer interchangeably and everything just works, with Java automatically converting back and forth between the two as needed. (An Integer is just a class that contains inside it an int.)
• Once you have declared your hashmap with the key and value types as String and Integer, then when you use the put and get methods, they act just like they should, e.g., get takes a String as input and returns an Integer as output.
Text Generator
We have provided you with a text generator class that you can use with your Markov Model class to generate text. The text generator class takes three input parameters, i.e., the main method has argument (k, n, filename):
• k, the order of the Markov model;
• n, the number of characters to generate;
• the filename of the text to use as a model. (This file should be in the project root directory, above the src folder.)
You can set the input parameters in IntelliJ under Run → Edit Configurations, where you can create a new configuration (of type Application). There you can set the program arguments. For example: ”3 15 PS6Test.in” as the program arguments.
The text generator reads in the file as a long text String, creates the MarkovModel, and calls initializeString on your Markov Model class using the text.
It then generates a new text, using the first k characters of the original input text as a seed (and as the first k characters of the output text). In more detail, it begins with a String kgram equal to the first k letters from your text file. It generates the next character by calling nextCharacter on your Markov Model, using the initial kgram as your input string. Then it updates the kgram, adding the new character to the end. It continues in this way, at every step using the most recent k characters to query the Markov Model for the next character.
If it ever reaches a point where there is no possible next character, then it stops (outputting a string shorter than desired).
We will test the functionality of your nextCharacter method in Problem 6.b. by making use of this TextGenerator class that we have provided for you.
Optional Experiments
Problem 6.c. (Optional) Word-based Markov Model:
You might also experiment with using words instead of characters. For example, instead of looking at the probability that character ‘c’ comes after the string ‘cra’, you could look at the probability that the word cat comes after the word yellow (i.e., order 1, where order is defined based on the number of words), or the probability that cat comes after the phrase the vicious yellow (i.e., order 3). If you develop your Markov Model based on words, you might get a more interesting text, as long as you begin with a sufficiently long text.
Note: This bonus problem is an extension to the basic character-based Markov Model. You must still submit your basic version, and it must work reasonably well before your submission for this word-based Markov Model is considered for bonus marks.
Creative Competition
Submit the best, most interesting text that your program produces. Post your best, most creative work to the forum (in the specified location). The one(s) with the most upvotes win(s)! You could aim for several goals: (i) plausibility (i.e., does it read like a real text), (ii) novelty, and (iii) humor. All who post a valid submission in the forum will attain the “Born to Write” achievement.
“Half the fire a funny little man began to stay at heavens. ‘How beautiful this kingdom’ said their new emperor.”

Reviews

There are no reviews yet.

Be the first to review “CS2040S: Data Structures and Algorithms Solved”

Your email address will not be published. Required fields are marked *