CS2710 – Problem assignment 6 Solved

$ 29.99
Category:

Description

Problem 1
Part a.
(i). It is syntactically invalid and therefore meaningless.
(ii). It correctly expresses the English sentence.
(iii). It is syntactically valid but does not express the meaning of the English sentence.
Part b.
(i). It correctly expresses the English sentence.
(ii). It is syntactically valid but does not express the meaning of the English sentence.
(iii). It is syntactically invalid and therefore meaningless. (iv). It is syntactically invalid and therefore meaningless.
Part c.
(i). It correctly expresses the English sentence. (ii). It correctly expresses the English sentence.
(iii). It is syntactically valid but does not express the meaning of the English sentence. (iv) It is syntactically valid but does not express the meaning of the English sentence.
Part d.
(i). It correctly expresses the English sentence. (ii). It correctly expresses the English sentence.
(iii). It is syntactically valid but does not express the meaning of the English sentence.
(iv). It is syntactically invalid and therefore meaningless.
Part e.
(i). It correctly expresses the English sentence.
(ii). It is syntactically valid but does not express the meaning of the English sentence. (iii). It is syntactically valid but does not express the meaning of the English sentence.
(iv). It is syntactically invalid and therefore meaningless.
Problem 2
Part a.
Occupation(Emily, Surgeon) โˆจ Occupation(Emily, Lawyer) Part b.
โˆƒo (o โ‰  Actor) โˆง Occupation(Joe, Actor) โˆง Occupation(Joe, o) Part c.
โˆ€p Occupation(p, Surgeon) โ‡’ Occupation(p, Doctor) Part d.
๏ฟขโˆƒp Occupation(p, Lawyer) โˆง Customer(Joe, p) Part e.
โˆƒp Boss(p, Emily) โˆง Occupation(p, Lawyer) Part f.
โˆƒp1 Occupation(p1, Lawyer) โˆงโˆ€p2 Customer(p2, p1) โ‡’ Occupation(p2, Doctor)
Part g.
โˆ€p1 Occupation(p1, Surgeon) โ‡’โˆƒp2 Occupation(p2, Lawyer)โˆงCustomer(p1, p2)
Problem 3
Part a.
First, assign symbols for the paragraph:
BelongTo(p,c): Predicate. Person p belongs to Club c.
Like(p,w): Predicate. Person p likes Weather w.
Skier(p): Function. Person p is Skier.
MountainClimber(p): Function Person p is mountain climber.
Tony, Mike, John: Constant denoting people.
Alpine Club: Constant denoting club.
Rain, Snow: Constant denoting weather.
Tony, Mike and John belong to the Alpine Club.
BelongTo(Tony, Alpine Club)โˆงBelongTo(Mike, Alpine Club)โˆงBelongTo(John, Alpine Club) —โ‘ 
Every member of the Alpine Club is either a skier or a mountain climber or both.
โˆ€m BelongTo(m, Alpine Club) โ‡’ Skier(m) โˆจ MountainClimber(m) —โ‘ก
No mountain climber likes rain.
๏ฟขโˆƒp MountainClimber(p) โˆง Like(p, rain) —โ‘ข
all skiers like snow.
โˆ€p Skier(p) โ‡’ Like(p, snow) —โ‘ฃ
Mike dislikes whatever Tony likes and likes whatever Tony dislikes. [โˆ€w Like(Tony,w) โ‡’ ๏ฟขLike(Mike, w)] โˆง [โˆ€w ๏ฟขLike(Tony,w) โ‡’ Like(Mike, w)] —โ‘ค
Tony likes rain and snow.
Like(Tony, Rain) โˆง Like(Tony, Snow) —โ‘ฅ
Part b.
First, use FOL express the statement:
There exists a member of the Alpine Club who is a mountain climber but not a skier.
โˆƒp BelongTo(p, Alpine Club) โˆงMountainClimber(p) โˆง๏ฟขSkier(p)
Then for the knowledge base, from โ‘ , we get:
BelongTo(Mike, Alpine Club) — โ‘ฆ
Knowledge rule โ‘ข can be expressed in universal quantifier:
โˆ€p MountainClimber(p) โ‡’ ๏ฟขLike(p, Rain) — โ‘ง
For knowledge rule โ‘ฃ, eliminate the โ‡’:
โˆ€p ๏ฟขSkier(p) โˆจ Like(p, snow) — โ‘จ
Letโ€™s do the resolution refutation:
According to the resolution refutation, we got the contradiction at KB โˆง ๏ฟข ฮฑ, so the knowledge form the paragraph entails the statement.

Reviews

There are no reviews yet.

Be the first to review “CS2710 – Problem assignment 6 Solved”

Your email address will not be published. Required fields are marked *